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INTRODUCTION:

s

-~ 7 When a body, floating on the surface of an infinite,
ideal, inviscid, irrotational fluid is subjected to a periodic
vertical displacement, a wave pattern is created in the
fluid and the problem of determining this pattern from a
knowledge of the body geometry and applied forces is well
known in fluid mechanics. In problems with both partially
and fully submerged objects, guantities of physical

interest are not only the wave patterns which may be derived
from the velocity potential but also functionals of the
potential such as added mass and damping factors which
measure the distribution of energy in the fluid, e.g.
Weyhausen and Laitone [26, p. 567].  These factors are, of
course, dependent on the body geometry.and the present paper
is devoted to showing how these quantities may be optimized
over }estricted classes of body geometry.

Specifically we will study the problem of the optimal
design of a floating body, totally submerged in a fluid of
finite depth. 1In the terminology of optimal control, this
is a problem of optimization of geometrical elements ’ji
(see Lions [17]).

In his classic paper [13], John formulated this problem
of a partially immersed heaving body as a boundary value
problem for the velocity potential which satisfies Laplace's
equation with given Neumann data on the submerged portion
of the boundary, a linearized free surface condition on the

mean free surface, a homogeneous Neumann condition on the




ol Bt Sun Jindec St S Mace Snan S Jhgs S mait it Jend ihete

bottom of the fluid container, and a radiation condition.
Under certain restrictions on the body shape, in particular
that it be convex, smooth, and have normal intersection with
the free surface, he proved the existence of a unique
solution and formulated an integral equation for the
velocity potential evaluated on the body surface. Kleinman
has shown in [15] that the geometrical conditions of John
may be somewhat relaxed: corners are allowable as are
non-normal intersections with the free surface, and convexity
is not necessary. However the essential restriction that
vertical rays from the free surface intersect the body at
most once remains. Relaxation of this restriction has been
reported by Ursell [25] for the two dimensional case. 1In
[15] it is also shown that the integral equation, suitably
modified possesses unique solutions i.e. methods are
provided for showing how one may eliminate the problem of
the existence of so-called irregular frequencies. We
should point out here that such irreqular frequencies are
an artifact of the integral equation method; they are
particular values of the parameter appearing in the free
surface boundary condition for which the integral equation
has multiple solutions. However, the original boundary
value problem has at most one solution and so we see that
an irregular frequency does not correspond to a physical
pathology. Moreover, such irregular frequencies are
dependent on the shape of the body. As we will be looking

at a family of such bodies it will be essential to our
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analysis that we use an integral equation formulation that
is free of such irregular frequencies and one of our first
tasks will be to establish such a boundary integral
equation for our problem.

When the body is completely submerged, John's
uniquehess proof no longer applies, however, Maz'ja [19]
has provided a proof for a class of bodies subject again
to certain geometric restrictions. In this case the
boundary value problem may once more be reformulated as a
uniquely solvable integral equation. A virtue of the
integral equation formulation of problems for partial
differential equations in unbounded regions exterior to
a bounded obstacle lies in the apparent advantage that
numerical algorithms for bounded domains (the domains of
the integral operators) have over algorithms for unbounded
domains.

Problems involving optimization with respect to the
domain have been treated by a number of authors, among
whom we mention Cea and his co-workers [51], [6],

Chenais [7 ] and Pironneau [21], [23]. This last author
has published a book [24] on this general topic. But the
great majority of the papers in this area treat problems
in bounded domains. In this paper, we deal with a problem
whose natural setting is an unbounded domain and we will
find the boundary integral equation method particularly
convenient. With respect to optimization problems in

exterior domains, using boundary integral equations, we
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refer to the recent treatment of the three dimensional
inverse acoustic scattering problem by Angell, Colton, and
Kirsch [1] and the subsequent numerical treatment of an
inverse two dimensional problem by Kirsch [14].

As in [1l ], our approach to the optimization problem
will depend on the reformulation of the original boundary
value problem (which here includes not only boundary
conditions given on the bounded surface of the body, but
also on the bottom and on the free surface which are of
infinite extent), as a uniquely solvable integral equation
defined on the boundary of the body. The first section of
this paper is devoted to this question. While the use of
an appropriate radiation condition and Green's theorem
will lead to an integral equation, it is important to note
that the equivalence of this integral equation formulation
and the original boundary value problem depends on a
uniqueness theorem for the boundary value problem. This is
already a non-trivial problem which is, as yet, not fully
understood. As mentioned earlier, for the case of a
totally submerged body, Maz'ja [19] has given a proof of
uniqueness for a restricted class of bodies. The recent
and interesting paper of A. Hulme [21] discusses the
result of Maz'ja and most effectively describes the
geometric meaning of the result. Since it is essential to
have a uniqueness result for the original boundary value
problem, we will confine ourselves to this class of bodies;
our results can, however, be extended immediately to any

situation in which uniqueness obtains.




The second section of the paper is then devoted to
the formulation and proof of the existence of a solution,
optimal in the sense of being a body with minimal (or
maximal) added mass or damping, in any compact set of
admissible surfaces. We point out here that this problem
is highly non-linear: the cost function involves the
solution of the boundary value problem relative to the
unknown boundary.

Since the class of all admissible surfaces is convex
we study necessary optimality conditions in section 3.
There, we compute the Gateaux derivative of the cost
functional using, basically, the arguments introduced by
Hadamard ([11]. The problem of computing the derivative of
a "domain functional" appears in a number of works
including (2], [51, [6], and [7]. The techniques used
here allow us to deal with a much more general situation
than that, for example, of Kirsch [14] in so far as we
work in three dimensions and make no a priori analyticity
assumptions on the parametric representation of the surface.
Moreover we do not use techniques of complex variables e.q.
conformal mapping arguments or reflection principles.

As one would expect, since we are dealing with a
constrained optimization problem, the necessary conditions
take the form of a variational inequality and we conclude
section 3 with a brief discussion of a numerical procedure
for finding solutions of this inequality. It is our

intention to present concrete numerical results elsewhere.
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1. The Basic Boundary Value Problem

In this discussion we will consider the following
geometry: A Cartesian coordinate system is centered at a
point on the linearized free surface and oriented so that
the free surface coincides with the (x,z)-plane (y=0) and
the fluid extends from y=-h to y=0. The submerged body

3 lying in a strip

will be a simply connected subset of R
RZX[-h,-EO] whose boundary ' is a bounded Lyapunov
surface of index 1. We will place certain additional
restrictions on ' and these will be indicated as they
become necessary. We denote the interior of the body by

D , and the points of the strip RZX[-h,O] and exterior to
the body by pD¥. The condition that the surface be
Lyapunov of index 1 guarantees, among other things, that
there exists a Lipschitz continuous normal n at all points
of TI. We emphasize that n is oriented so that it points
into D'. Points will be denoted by p=(xp,yp,zp) with

cylindrical coordinates p=(p ) and the subscripts

p®pr¥p
will be omitted if there is no danger of confusion.




We concern ourselves with the following boundary value

problem:
(a) A¢ =0 inD'

(1.1) (b) %% + k¢ = 0 on y=0
(c) %% =0 on y=-h
(d) g-g=g on T

together with a radiation condition
o0 _ . = =%
(1.1) (e) o lk0¢ o(p %)

wheregeC(I') and ko is the root with largest real part of

the transcendental equation
(1.2) kn sinh knh = k cosh knh .

Recall that n always points into pt.
In [19], Maz'ja introduced a restricted class of
boundaries for which this boundary value problem has at most

one solution. We formulate that theorem here as follows:

Theorem 1.1: Let V be the vector field in R3 defined by

WA

oty oty

Then the homogeneous boundary value problem (1) with g=0

" has only the trivial solution provided

(1.3) ven >0 onT .




A discussion of this result and its geometric significance
may be found in A. Hulme [12]. We will refer to the class
of all such surfaces as the Maz'ja class.

Following John [13] we introduce the Green's function

for this problem which is normalized to have the form

(1.4) y(p,q) = -%_TT "B}—qr + R(p,q)

where the function R has bounded derivatives with respect

to g for points pel (see [13; p. 96]) and Yy satisfies
conditions 1.1b, ¢ and e. Using this Green's function to
define single and double layer potentials, the usual jump
conditions can be established as in the potential-theoretic
case since the singular behavior of y and %HEY is determined by
the first term in (l1.4). For convenience, we record these

results here:

(1.5)  lim, 3— I ulg)y(p,q)dl = tu(p)+f u(p) XRed) ar

p>T~ “'p ¢ i P

(1.6) lim, f u(q) %35 Y(p,qar, = 1u<p>+£ u(q) ilggéﬂl ar

p>T T
+
where p+I'" means p approaches I' from Di.
Moreover, if u is a solution of the boundary value
problem (1l.1) then one may use Green's Theorem to draw the

familiar relation

2u(p), pedt

a.n | [v(p.q) e L <v<p,q>)u<q)]drq ={u(p), per
r q q 0, peD”




If one then uses the boundary condition (1l.1d) we have,

d =
(1.8) f Y(p.q)g(q)dfq-[Au(q) 3n- [Y(P,@)1dly = u(p)

T T !

or, in operator notation

(1.9) (I+K*)u = f y(p,q)g(q)dlr
r

q

where K* is the boundary integral operator with kernel 2%— .

q
We pause to remark that, given a solution, w, of this

integral equation we may represent the-solution of the

boundary value problem, according to the relatirm (1.7) by

= _ Y (p,9) +
(1.10) u(p) sl Y(p, g (@ar, 151[ w() 2B ar , pep

and, again using the jump relations one sees easily that

(1.11) u|, = w ,

which is a direct relationship between the solution of the
boundary integral equation and the boundary values taken on
by the solution. Such a direct relation does not obtain
when one uses a layer approach in which one assumes that

the solution u has a representation as a single layer,

u(p) = f w(q)Y(p.q)qu '

T
and then the boundary condition and jump relations are
employed to obtain an integral equation for w.

Our first task is to discuss the unique solvability

of (1.9).




Theorem 1.2: Let I be Lyapunov of index 1 and belong to

the Maz'ja class. Let geC(T). Then the integral equation

(1.9) has a unique solution.

Proof: Since K* is an integral operator with a weak
singularity on the smooth surface T it is compact

(e.g. [ 8]) hence the Fredholm alternative applies. Thus
the integral equation in question either has a unique
solution in LZ(F ) (or in fact in C(I )) or the homogeneous
adjoint equation has non-trivial solutions in which case

(1.9) has solutions if and only if the function f vygdl' is

r
orthogonal to all solutions of the homogeneous adjoint

equation

(1.12) (1+%)6 = 0 ,

where K is the boundary integral operator with kernel %%— .

P

We first prove that any solution to (1.12) is orthogonal

to f vygdr for any chz(F).
r

8
Assume that w is a solution of (1.12) and define

- 2 +
v(p) := [ Y(p,q)w(q)dfq , PEDT .
r

2
Certainly w, as a solution of (1.12) is continuous on T

and the jump condition (1.5) yields

2 .2
%% = w+Kw = 0 on [ .,

Hence the function ¥ is a solution of the exterior

homogeneous submerged floating body problem and so, by




Theorem 1.1, ¥=0 in D'. Therefore,

0 = J g(q)w(q)dl‘q = J f Y(q,P)w(p)dI‘pg(q)drq
’ T rr

and because the Green's function is symmetric we obtain

[ j Y(p.q)g(q)drqw(p)drp =0
T T

which is the required orthogonality condition. Thus the
equation (1.9) always has at least one solution.
To see that (1.9) has at most one solution, we assume
that o* is a non-triéial solution of (I+R*)4*=0. Define v
in D_ by
v(p) = l ﬂlégéﬂl 5*(q)drq, peD .

Then, again using the jump relations we have

v(p) = (I+ER*)B*(p) = 0

and so v is a solution of the homogeneous interior Dirichlet
problem for the Laplacian. Since there are no non-trivial
solutions of this problem, v must vanish in D~ and so

32:(p)=0 for peT
an

Now define v in D* by

vip) = [ 2(Bed) Fuqrar , pent .
q
r

-]
Since w* is continuous on ' and T is Lyapunov of index 1,

2!:(p) exists and is equal to 32:(p)=0 by a Theorem of

on an

Lyapunov (Glinter [ 9;p. 297]). So again by Maz'ja's
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. . . +
uniqueness theorem, v must vanish in D' and so, by the

jump conditions we have
L, . =,2
~T*+R*p* = 0 .,

s, =2 2 . . .
But O*+Kw*=0 as well, hence w*=0 which is a contradiction

and the theorem is established.




2. The Optimization Problem

Let F0={p€R3||pl=l} denote the surface of the unit

ball in R3 1,1

and let C (FO) denote the space of continuously
differentiable functions whose first derivatives satisfy a
Lipschitz condition and which is equipped with the usual
HS8lder norm ,"’,1,1 (see e.g. [8]). We will assume that
we are given a family of surfaces which can be described

1,1

by C parameterizations:

P-P
3 oy~ ~ 0
. = = + =
(2.1) T(£) = {peR”|p=f(B)B+Pqs B = 1pmp T
3 . 1,1 2
where f:T +R” is an element of C (Tg) and pyeR™x(-h,-¢4).
Let a and b be two positive constants and define the subset

F ccl'l(ro) by

a,b
(2.2) F, = (gect2ry) | ||£]]] 1<b, £(B)B+pyeRPx(~h,-¢()

. a,b o). 1,1%P+ TIPIP¥P =<0
and f(p):z2a, §er0} .

3

Definition 2.1: A surface S in R~ will be called admissible

provided S can be described by a parameterization fEFa’b and
S is contained in the Maz'ja class (c.f. Theorem 1.1).

Note that since each admissible surface is completely
determined by the function f, we will henceforth simply
refer to "the surface f" although, when convenient, we will
use the notation I'(f). Clearly, each admissible surface
describes a surface bounding a bounded region which contains

a ball of radius a/2 and center Py in its interior.

- -
............




.............

Figure 2

We will, when necessary, denote the region in sz(-h,o)
exterior to an admissible surface f by D; and that interior
to the surface by D;.

Let Uad be a compact subset of admissible surfaces.

For example, since the imbedding CZ(I‘O)*C]"1

(Fo) is
compact, we may choose Uad to be the subset of admissible
functions in CZ(FO). This particular choice leads to a
non~-linear optimization problem over a closed convex set.
The convexity will be advantageous for subsequent numerical
considerations.

We now wish to consider a family of boundary value

problems of the type discussed in section 1 which may be

considered as indexed by Uad:

(a) 4¢(p) =0, peD} ,

(b) %%+k¢=o on y=0 ,
(2.3) (c) %% =0 on y=-h,

(@ $2=g onr(f),

(&) 32 - ikgs = o(e™h .
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Note that, because we are considering a family of boundary
value problems, the data g in (2.3d) must be defined
throughout the domain formed by the union of all admissible
surfaces. This is indeed the case for heaving motion
where g=-n-y.

With this understanding, each choice of surface
erad gives rise, according to Theorem 1.1, to a potential
¢=¢ (p; £), pED;. The class of optimization problems that
we discuss below then have the form: Let J:C(F0)+R be

continuous and define a map J[-]:Uad+k by

(2.4) J[£]:=3(§(-;1£)), £eU_4

where
(2.5) $(§7f)==¢(f(§)§+Po:f), §€T0 .
The optimization problem is then to find fOEUad such that

< J(f], for all feU

(2.6) J[fO] ad

or

(2.7) J[fol >2 J[f), for all erad .

We will confine our discussion to the problem of minimization.

This is sufficiently general since the problem of maximizing

a functional J may always be replaced by that of minimizing
-Jo

Specific forms of the functional J of (2.4) may be

chosen to reflect desirable design criteria. For example,




———l T
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as mentioned in the introduction one may choose J to
represent the added mass of the hull. 1In this case, the
problem of interest is that of minimizing the functional

J in order to reduce the hydrodynamic force on the ship
hull, a goal which is obviously of great importance to

ship design. 1Indeed, it is well known (see [26;pp. 563~567])

that the added mass of a particular hull may be represented by

= ad
M_ = Re f ¢o(p) 5= ar .
T'(£f)

This form, in light of the boundary condition (2.3d), leads

to the functional

(2.8) JIf] = Re f 3(B:£)g(£(B)B+py) T (B)aTy

To

where Jf is the Jacobian of the transformation p=f(§)§+po.
As we will see below, this form indeed defines a continuous
functional on Uad'
Returning to the more general problem of minimizing
the functional (2.4), our first task is to show that the
functions §(-;f) related to the family of boundary value
problems (2.3) via the equation (2.5) depend continuously
on the choice of surface f, i.e. that the mapping
f§(+;f) is continuous as a map from Uad into C(FO).

Recall that the solution of the boundary value problem (2.3)

is given in D; (see also equation (1.10)) by

(2.9) ¢(p) = %f Y(PIQ)Q(Q)qu-%J %ﬁ— Y(P,q)u(q)dT

T (£) r(ey 9

q ’




...................

where u is a solution of the integral equation (1.9) on

I'(f). Thus ¢(p;£f) =u{p;:;f) and we may write the
I(f)

integral equation (1.9), suppressing the dependence of ¢

on £ as

(2.10) ¢(p)+l(f)§ﬁg vip,@)¢(@)al = i(f;(p,q)g(q)drq .
Theorem 1.2 guarantees that this equation possesses one
and only one solution for each given feuad and geC(T(f)).
We now wish to use the integral equation (2.10) to
study the mapping f»¢(-;f) as a map from U.g into C(ly) .
In particular we wish to show that this map is continuous
and, consequently, a functional J of the form given by the
relation (2.4) will assume its minimum value on Ug- TO

this end, we consider the integral equation

(2.11) ¢(f(§)§+90)+I [3— Y (£(B) B+, (&) G+py) 10 (£(3)G+py) I £ () ATy
Ty d

Y(f(f))f>+p0,f(61)ci+po)g(f(c})aﬂpo)Jf(é)drC~I

0

———

obtained from the integral equation (2.10) by means of the
change of variables p=f(§)§+p0. Note that, under our
hypotheses, the Jacobians, Jf, of the transformations, are

uniformly bounded on Fo with respect to feuad since Uag is

1,1

a bounded set with respect to the C -norm. Indeed, writing

q=f(8q,¢q)§+p0, c}=(sineq cos¢q, singé sin¢q, coseq), then,

q
for any given feuad, the Jacobian has the form

...............................
.....................................................
..........




2

_ 2 3 2
(2.12) Jf(eq.¢q)—f(9q.¢q)[f(eq,¢q) sin 8q+(§$ f(eq,¢q))

3 2_..2 ]
+(§E f(eq,¢q)) sin eq] .

Since each term of the second factor on the right is bounded

by [1£]17 | ana |£(6,0) || I£][, | we see that

(2.13) sup |J (@] < /T {[£]12 | s b2/T .
aefo '’

Introducing the functions 6(§):=¢(f(§)§+po),
gf(§)=g(f(§)§+90). af(§:§)=[§3— Y(f(§)§+po. f(i)§+p0)]Jf(§)
q
and bf(§,§)=[y(f(§)§+p0;f(§)§+po)]Jf(Q), then equation (2.11)

assumes the convenient form

(2.14) 6(p)+f af(p.q)é(q)drq = f bf(p,q)gf(q)drq .
o o
Let B(C(FO)) denote the class of bounded linear operators

on C(T',). We define two families of operators {A_.}
0 £ erad
and {Bf}erad in B(C(Fo)) by the relations

(2.15) A, B) = [ ag(B,@v@ary, ber,
To
and

(2.16) B, () (B) = [ be(B,@v@ary, Bery .

Lo

We will establish the continuity of the map f+§ by showing
that the kernels ag and bf are weakly singular for all
erad and that the operators Ag and Bf depend continuously

on £f i.e. that the maps f»Af and f»Bf of Uad into B(C(FO))
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are continuous when B(C(FO)) is equipped with the uniform

operator topology. To this end, we will need two crucial

estimates which are given in the following:

For any §, 0<é<%, the kernels ag and bf are

RO - XS
- .ot : « . . .

Lemma 2.1:
weakly singular and satisfy the inequalities:

. - .~ s c
(2.17) Iaf(p,q)-ag(p.q)l < |£-g]] ~1~ s
1' |p-q|
and
(2.18) |b.(,&)-b _($,& | < ||£-g]]° i
. r r -
£ 9 1,1 [p-g|t+e

where c and c, are positive constants. The proof is

quite technical and we relegate it to an appendix.
The present

An

estimate similar to (2.17) was used in [1].

estimates are used in the proof of the first part of the

next theorem.

Theorem 2.1l: Let B(C(FO)) denote the space of bounded

linear operators on C(PO) equipped with the uniform

operator topology and assume that the map f»gf from

Cl'l(Fo) into C(FO) is HOlder continuous. Then the mappings

foA. and 9B, of cl'l(ro) into B(C(T,)) are HSlder continuous.

Moreover, since the set Uad is compact, the map f¢§(-;f)
of Uad into C(Fo), where ¢ (+;£f) is the unique solution of

the boundary integral equation (2.14), is H6lder continuous.

Consider, first, the mapping f»Bf. Using the

Proof:

estimate (2.18) we have
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1B () (B)-B_(4) (B | < [ |bg (B,@) -bg (B, | |v(@) |ary

To

) ~ ~j=1=§
< Hwllalle=gl1],) oyf I8-a171"Car,
To

This establishes the HOlder continuity of f»B It then

f.
follows from the assumed continuity of the map f»gf that

the map f»Gf from Uaa into C(PO), where Ge is defined by

(2.19) G¢(P) :=Bg(gg) (B) = J be (B,8)gg(q)dly »
To
is continuous. We may now rewrite the integral equation

(2.14), using the definition (2.19), as

(2.20) 3(B)+[ a (3, D@ ary = G (B), Bery
Lo

This equation is of exactly the same form as that treated
in Theorem 2.2 of [1]. The remainder of the proof
follows, almost verbatim, the proof in [1] and we do not
repeat the arguments here.

The continuity of the mappings f»§(+;f) and f»Gf
lead immediately to the following corollary which establishes

the existence of solutions of our optimization problem.

Corollary 2.1: Under the hypotheses of Theorem 2.1, the

functional J[+] defined by the equation (2.8) is continuous

as a map from Uad into R and consequently takes on its

absolute minimum on the set Uad'

There is, of course, no guarantee that the solution

of our minimization problem is unique. We can, however,

AR C AR
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formulate a continuous dependence result for the solution
set of the minimization problem. To this end, we consider
the functional as a continuous map on the product space
C(FO)XC(FO). For example, we may think of the added mass
functional defined in equation (2.8) as a functional
depending on the given data g as well as on f.

For a given functional J(f,g) we set
(2.21) iy = 1nf{J(f,g)[f€Uad}
and define the set-valued mapping
(2.22) ¢(q9) = {erad|J(f,g)=ig} .

Note that, by Theorem 1.2, for all gEC(FO), d(g)#@. In fact,
if gEVCC(FO), V closed, then the graph of this set-valued

mapping is closed, as is shown in the following theorem.

Theorem 2.2: Let VcC(FO) be closed and J:UadXV+R be

continuous. Then
(a) the real-valued function g»ig is a continuous
map from V into R, and
(b) the set-valued function ¢, defined by the

relation (2.21), has a closed graph.

Proof: Suppose that {gn} and {fn} are sequences in V and
U,q respectively such that In>9 in C(Fo) and f »f in
Cl'l(To), and fn€®(gn). Since U.g is compact V is closed,
fEUad,and d(g) is defined. We wish to show, first, that

ig +i, and second, that fe¢d(qg).
n
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Now, let f0€¢(g). Then, the continuity of J implies

that i +J(f,g). Moreover, by definition of i_ ,
9n %n

J(fo,gn)zig for all n. Again by continuity of J,
n

J(fo,gn)+J(f0,g)=lg. Hence lgsJ(f,g)=ii$ 1gnsii$ J(fo,gn)=1g.

Therefore J(f,g)=1i =1lim i and fed(g).
n-+o n

Corollary 2.2: The optimal solutions of the minimization

problem for the functional (2.8) depend continuously on

the boundary data g in the sense of Theorem 2.2.
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2 3. Optimality Conditions

We turn now to the question of finding necessary
conditions for the constrained optimization problem.
Specifically, we will treat the problem of minimizing the
functional (2.8) representing added mass, under the additional
assumption that the subset of admissible surfaces, Uad' is
convex as well as compact. Such an additional requirement
is not overly restrictive since, as we remarked in section 2,

1,1

the class of all admissible surfaces is convex in C (T

o) -
If, as suggested there, we take Uad to be the class of all
admissible Cz-surfaces, Uad will be convex.

As is well known, the basic necessary condition in

this context takes the form of a variational inequality.

For convenience, we recall here some basic definitions.

Definition 3.1: Let X be a vector space, Y a normal linear

space and A a mapping defined on a subset DcX with range
in Y. Let x0€D and ¢cX. If the limit
(3.1) A'(xy:0) = lim [A(xg*+ed) -A(x,) ]

e+0
exists, then A is said to have a Gateaux differential
A'(xo:¢) at X, in the direction ¢. If A'(xo;$) exists for
all ¢eX, then A is said to be Gateaux differentiable at Xq -
If A'(x0;¢) exists for all ¢£X and if the map ¢»A'(xo;¢)
is linear and continuous then this map is called the Gateaux

derivative of A at the point x In this case we will

0
denote this map by A'(xo). Thus A'(xo) is a linear
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continuous map from X to Y.

Remark: We note that it makes sense to consider the limit
(3.1) only if x0+e¢eD for all ¢ sufficiently small.
The basic theorem, stated here in a form slightly weaker

than usual (compare e.g. [4, p.1l19]) is the following:

Theorem 3.l: Suppose X is a vector space, KcX is a convex

subset, and A:K+>R. If xoeK is such that A(xo)sA(x) for all

xeK and if A'(xo;x-xo) exists for all xeK then
(3.2) A'(x5ix-x5) 2 0 for all xeK .

Proof: Since x0 minimizes A on K and since K is convex,

x0+e(x—x0)eK for all €€{0,1] and all xcK and
A(x0+e(x-x0)) 2 A(xo) .

Hence

A(x0+e(x-x0))-A(xO)

2 0
€

for all €e(0,1]1 and all xeK. Since, by hypothesis,
A'(xo;x-xo) exists for all xeK,

A(x0+e(x-x0)-A(xo) 3
+ € - *

(3.3) A'(xo;x—xo) = lim
e+0

Remark: The slight difference in the form of the statement
of Theorem 3.1 from that usually found in the literature
(e.g. [4] loc.cit.) lies in our assumption that A'(xo;h)
exists only for those h=(x-x0), xeK. This is crucial for
our considerations since the functional we treat is only

defined on a convex set (Cl'l(F

o) functions representing

.......................................
.....................................
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surfaces in the Maz'ja class) and cannot be interpreted

outside of this convex set. Thus it is impossible for us

1,1

to consider arbitrary C ' -perturbations of the form x,+ch.

The inequality (3.2) is the basic variational inequality
which expresses a necessary condition for the problem of
minimizing A over K. We remark that, if A is convex, then
the condition (3.2) is also sufficient for a (unique)

minimum. We will not consider this question in what follows.

The application of this result to our concrete situation

(x=C1'l

(Po),K=Uad) will be possible provided we can show that the
limit in (3.3) exists for the functional J defined in

(2.8). If, indeed, this limit exists for all fleUad

i.e. if, for every fleUad,

J[fl+e(f-fl)]-J[fl]
+ €

J'[fl;f~fl]:=llm

e+0

exists for all erad, then solutions of the corresponding
variational inequality will be candidates for optimal
solutions. Notice that, in light of the existence theorem
of section 2, there is no question concerning the existence

of at least one solution of the variational inequality

(3.4) J'[£;£~£,]1 = 0, for all £eU_4

since this inequality will necessarily be satisfied at any
optimal solution in Uad’ What is needed here is, first,
the calculation of J‘[fl;f-fl] and, second, the description
of an appropriate approximation scheme for the solution of
the resulting variational inequality (3.4).

With regard to the differentiabilitv of J we remark
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that a number of authors, see e.g. (101, [31, (91, [24],

and [4] have discussed similar questions with regard to

what are generally referred to as "domain functions”.

Many such discussions (see e.g. {9], [14]) consider two
dimensional problems and rely heavily on conformal mapping
arguments. Here, we return to Hadamard's technique (see [3])

to establish the form of J'. This derivation depends on a

technical lemma which we state below and whose proof, which

is somewhat involved, we will relegate an appendix. Recall
that the functional J depends on the surface f through the
solution of the boundary value problem (2.3). Actually

we consider a special class of boundary value problems,

namely those for which the given values of the normal
derivative on T are in fact the values of the normal
derivative of a potential function which is defined throughout
RZX[h,OJ. That is, the boundary condition (1.14) is

replaced by

where V23=0 in R2X(—h,0). Oof course u will not satisfy the
boundary and radiation conditions appropriate to the problem.
In this sense u plays the role of the incident field in

scattering problems. 1In this vein we define

uT = u+u

which behaves as a total field and satisfies the condition

T
ou
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Lemma 3.1l: Let u be harmonic and let uy and u, be solutions

of the boundary value problem (2.3) corresponding to the

admissible surfaces T =F(fl) and F2=F(f2) with D; and DI

1
denoting the interior and exterior respectively of Ti,

i=1,2. Let u§=ui+ﬁ, i=1,2. If we define AJ by

n duy auz
(3.6) AJ = J ul ’é_n_ dFl-I u2 W dl"z

3

AF = f a %% ar -J & %g + J Vug-Vung-[ Vuf-Vufdv
r r D]\ (D]nD}) D]\ (D]nD;)

or

W
[}

(3.7) A (78] %+ (vul-vu}) 1av- [1va|2+(val-vul) 1av.

DZ\(DlnDZ) Dl\(DlnDZ)
The proof of this lemma is given in Appendix B.

We may now use this form for AJ in order to compute

J'[fl;f-fll for f,fleUad.

Theorem 3.2: Let f and consider the functional

18Yaq

(3.8) JI[f) = Re I ¢(p;f)g(p)dl, feU
I (f)

ad '/

where ¢(p,f) is a solution of the boundary integral equation
(1.9) appropriate to the boundary T(f). Then, for all feU_q-

the Gateaux differential J'(fl;f-fl) exists and has the form

(3.9) 3 (£):£-5y) = Re| (£(B)-£)(B)) (£(5)) 2L VG (£(5) B+py) 12

r
0 +[nXVuT(f(§)§+p0)]2}dP§ .

Proof: For ease of notation we write v=f-fl and let

F€=F(f1+ev), 0sesl. Then
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m|=

Reyf [Ivﬁlz+(vuf-Vuf)]dv
D_\(D]nD_)

(3.10) L1ia(e +en-a(e))]

- J [|VG|2+(Vu§-VuE)]dV}
DI\(DInD:)

Consider the first of the integrals in (3.10). Then,

SFMMASMOENG PRI
]
H

iterating the integral we may write, using spherical

coordinates,

~12
(3.11) Il:=I | va| +(Vu{-Vuf)dv

DE\(DlnDe)

f {f [|Vﬁ|2+(Vu§'Vuz)]r2dr}dc
a Lo, 0)

-where A1 is a measurable subset of FO' R(6,¢) is an

interval of r-values and do=sinfd8d¢.

Figure 3

Using the mean value theorem equation (3.11) becomes
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£1(0,0)4ev(8,0)
I, = { 1 [|Vu|2+(Vu{'Vu§)]r2dr}do
alE 8,0)
= <] vio,0) 15 (0,000 (c,0,0)v (8,012 1| Ve | 2+ (vu] -7 ]| o
Al r=fl+>\h

where 0<As<ev. Similarly, we arrive at the same expression
for I, recognizing, in that case, that fl(e,¢)+ev(e,¢)sfl(6,¢).
Note that AluA2=Fo, that A=0(¢) and that, according to

Theorem 2.1, the solutions of the integral equations depend

continuously in the Cl'1 norm on the functions f. Hence,
decomposing Vu{ and Vuf into normal and tangential

T
directions and recalling that %%— = 0, we have

%[J(fl+ev)-J(fl)] = Ref v(f1+ev)2[(vﬁ)2+VuToVuf] ar
TO r=fl+kv

0

> ReJ ve2 [(v8) 2+ (AxvuT) 21ar,), as €0
To
which completes the proof.
Note that the differential is linear and continuous

with respect to v=f—f1 and that the variational inequality

takes the concrete form

(3.12) Ref(f(ﬁ)-fl(ﬁ))[fl(ﬁ)lz{[vﬁ<f(§)§+po)12
r

0 +[ﬁXVuT(f(§)§+p0)]2}dF§ >0 .

Having the explicit form of the Gateaux differential
we may indicate here, very briefly, the questions which

must be addressed in introducing a concrete numerical

procedure for the approximation of solutions of the

T e

hd




variational inequality (3.12). Systematic discussions of
the general problem may be found, e.g., in the book of

Cea [4]) or in the review paper of Oden and Kikuchi [21].
We repeat that here there is no question of the existence
of a solution of (3.12) in light of Theorem 2.1. To find

an approximate solution of (3.12), let {Sh}0<h<1 be a

dense sequence of finite dimensional subspacesof Cl'l(Fo)

and let Ugd=Uad”sh‘ Here as usual, h denotes an
appropriate index, normally the mesh parameter. The

}

h
sequence {Uad

approximating in some sense the constraint set Uad’ The

, . 1,1
o<h<l 1S 2 family of subsets of C (Fo)

approximation of (3.12) will then involve seeking a

function f eUh

1h¢Y%q such that

| h

Note that, since Uad is compact, Uadnsh is a compact
subset of a finite dimensional space. Again we may appeal
to continuity of J on Uad and hence of the restriction of
J to U,y4nS, to establish the existence of solutions of
these approximating inequalities.

Since U:d is a subset of the finite-dimensional space
S+ One may express flh and fh in the form

(3.14) flh =

[ 3¢ "4

N
ai¢i' fh = i B.d. ,

i=1 i

if {¢i}§=l denotes the collection of basis functions

spanning Sh, where oy and Bi are components of fl and £

with respect to the basis functions, respectively. By
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substituting (3.14) into (3.13), and using the linearity
of J'(f;v) in v, we then reduce the variational inequality

problem to an optimization problem in R': Find {ai}eKh

such that
N N
- ' od . R
(3.15) iil(ai Bi)J (jil aj¢j) $; =2 0, for all {Bl}eKh
where
N N oh
Kh:= {Bi}ER Ifh=iil Bi¢i€ adcsh .

Then several standard algorithms in use in the theory of
constrained optimization problems may be directly
applicable to our study. Four major methods of this type
are available. These are the classical method of
successive approximations (or fixed point methods),
pointwise relaxation methods, penalty methods and Lagrange
multiplier methods. However, it is understood that the
success of any of the aforementioned schemes, and the
questions of convergence of the solutions of the
optimization problems (3.15) to a solution of the variational
inequality (3.12) will depend heavily on detailed analysis
of how the approximate constraint sets Kh' and the subspace
Sh are chosen, as well as on establishing G8rding-type

estimates for the operator J'. We shall pursue these

questions in a separate communication.




APPENDIX A:

Iﬁ In Lemma 2.1 we introduced estimates in order to prove

that the operators Ag and Be, defined by equations (2.14)

and (2.15), are continuous on C(Fo) and that the mappings
ﬁ+Af and ﬁ»Bf from Uad into B(C(FO)) are continuous. Here,
we outline the calculations needed to establish those
estimates.

We begin by remarking that, since the set Uad is
bounded in the Cl'l-norm, the elements of Uad satisfy a
uniform Lipschitz condition. Hence, writing pf=f(§)§+po
and qf=f(§)§+po,where we affix the suffix on Pe and qe to

accentuate the dependence on f,
(Al)  [pg~ael < [£(®) | (B-@) |+ £(B)-£(D) |§ < M|pB-G]

where M is independent of f (recall that |f(p)|<b for Bely) .
Moreover, we can obtain a lower estimate on |[P-§| as
follows if we recall that for all erad, f(P)>2a pointwise

on PO:

v

IPe=ael 2 | I£(B) (B-3) 1-[(£(F) -£(H)) ]|

| 1£63) [18-a]- £ @ -£B) | |

v

from which we obtain
(A2)  |pe~qel+|E@-£®) | 2 |£(®) ||8-g] .
But since f(p)=|£f(p)|, we have

|f(c~l)'f(§)| = ||f(§)‘-|f(i5)ll = ‘qu'pol'lpf‘poll b Ipf-qfl




which, when combined with (A2) and the pointwise lower

bound on f, yields
A~ ~
(a3)  3|p-3| < |pg-agl -

Turning now to an estimate for the kernels ag, we
recall (see the relation (1.4)) that the normal derivative

of vy can be written in the form

(A4) _ {y( )] n(qf).(pf-qf) Q( )
Y(Perd = - + Ps/9
3nq fraf ZWIPf‘qf, 3 £3f

where Q is bounded. The unit normal to the surface has

the form

n(q) = A(q)/Tg(6,00)

where (eq,¢q) are the spherical angles associated with the
point gel'(f) and 1ni(q) is the normal vector to the surface
I'(f) whose components are computed in the usual way from
the parametric equations for the surface in spherical

coordinates. Explicitly, if q=f(eq,¢q)§+p0 and

d=(sin® cos¢q, sin6

q sin¢q, coseq) then

q

L _ 3 3q _ _ Of . o & _. of 2_, N
n(q) = 3%— 5o T f 55— siné 6 -f $q+f Slneq q

)
where
~  _ 93q _ . 3G
eq = 5%; and $q = (1/51neq) —$; ’
and
76,6 ) = £(£2sin%6 +(2E ) 2 2E %ain2s 1% .
£'°q'"q q ‘3% _ 90 q




Since the surface is described by a function feCl’l(Fo),
the usual Lyapunov-type estimates yield
(AS) In(qf)-(pf-qf)l < alpf'qflz
hence, with (A4),

C

9
Igﬁg Y(Pfrqf)l < TE;:EET + IQ(Pfrqf)l .

With the inequality (A3) and the boundedness of Q, this
last estimate becomes

-~

I%;— Y(Perqe) | & —
q |B-g|

and, since the Jacobian Jf(ﬁ) is also bounded (see the

estimate (2.13)), we have

(2]

lag(B,@) | = 5= YPgiQe) I (@ | < —— .
f Rq  ETEE |B-4]

Thus the kernels a, are weakly singular.

It is much easier to see that the kernels bf are
weakly singular and we omit the simple estimates.

In order to establish the first estimate (2.17) of

Lemma 2.1 we use the following estimate from [1;p. 52]:
~ ~12(1-6) $
(86)  |ng(ag) - (ag-pg)-n (qg) * (q,-pg) | <8]B-4] | 1£=glly 10 0<8<k,

where nf(qf) is the unit normal to the surface T'(f) at the point

qfer(f) and ng(qg) is similarly defined on the surface
r(qg).

Now, using (Al), (A3), (A5), and (A6) we have




TR

ng(dg) - (9g=Pg) 1 () (957p)

As= -
: 3 3
lag-pel lag-pg!
ne(qe) * (qe=pg)-n_(q ) * (g -P,)
= £'°f £f Yt g 39 9 9 . ng(qg) .(qg_pg)
|qf'Pf|
. 1 - 1 l
3 3
lag-pgl lag-pg|
s xp=1=28 5 . 12
< &lp-q|7 1% I glly ,+clB-4l

3 3,1-8
[lag-pgl - lagpel "]

3 3,8
[lag-pgl - 1ag-pel”] l
16
|B-4|

or, since both lqg—pg| and qu-pr satisfy (al),
$
A=) =1=28 o 118 L ayx ~y-dyx_x13-38 o 413 . g3
(A7) 828]5-31 71720 £-g] 1] +a15-d1718-31372¢ | lagpg ) - lagpe 1|

The last factor in the second term may be estimated as
follows where we write Af=qf—pf=f(§)q-f(§)§, and similarly

for g:
9 @a-3@® 51~ @3-a®p13|=|legl-1£] || 1ag] 2+ s [a£|+]a£|2
= A*B .
Then
(28) A < [8g-2f] < |9@-£(@ [+|gB)-£(H) | < 2|[£-ql]; 4

while each term in B is of the form |[£(B)B-f(J)d|<c|p-g]|
and so B53c|§-&|2.

Combining this last result with (A7) then yields

~ 1 =1=28 ~ o= (146 S
b s ey |B-a]7 % 4, l5-8) T M 1 £-g| 1] |
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which establishes the estimate (2.17).
In order to establish the last estimate (2.18) we

write
(A9) |bf(§r§)'bq(§:§)| = lY(prQf)Jf(Q)'Y(pgfqg)Jg(é)l
< ¥ (Pgrag) =Y (g ag) I (@ [+ (pgra) [ [T (@ -7 @ |

Since, according to the estimate (2.13), the Jacobian is
bounded we may estimate the first term on the right hand

side of the inequality (A9), by

-~ 1 1l

B, := ’ - ’ J < -

1 lY(Pf qf) Y(Pg qg)ll f(q)’ < B!Tpf'qfw ng_qg[’
since R is bounded. Then

1o -a_|-|pg=a.l] [1pg-a.l-Ipe~a 1111 -a_|-1p-q,]1°

Pq 9 Pg=d¢ g g Pg~dg g qg f °f
B1=8Tp_ =g [Tp -9l g ' 215 _~12
£ 3! 1Pg g a®|p-gl
< Zgﬂ T:-%TI:E (g (@) -£(3) [+[g(B)-£(B) |] |§‘§|-(l+6)'lf‘glli,l
a pP-g

or, as in (A8)
~ian ~1=(14+8 §
(a10) By s B|p-g|" M e-q]1] ; .

For the second term on the right of (A9) we have the

inequalities

32:=ly(pg,qg)’lJf(Q)'Jg(é)l s IJf(ﬁ)-Jg(ﬁ)l .

|B-4|
Examining the second factor and using the explicit form for

the Jacobian given in (2.12), we have
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1 3g=Tg| |f-g|[fzs.inze+f¢2)+f§sinze]’5+|g||[fzsinze+f§+f§sinze]‘S
-[gzsin26+f$+f§sin29]%,
emgl] [fzsin28+fi+fgsinze]-[gzsin28+g$+ggsin26]
£ f-g +p
1 1,172 [fzsin26+f$+fgsinz6?5+[gzsinze+g£+ggsir;76?5
22
¢ oylle=glly ey lhiararLlsinel” 1% %
L | g1, 1P 2 Y(TET+ gD Tsin TE, T+a,T
|£2-92] | sing |
(TEg[+Tga N Tsine]
(|£ |+ )£, -
< 0 !lf-gl' +0 (Jfl+|ql)|f_gl N | ¢| |g¢| l ¢ g¢|
1 1,1°72 TET+1q] ENEICN
(Ife|+lge|)'f9'ge[
ENEEN
< (Dl+302)”f-g”l,l .
€4 )
Hence B, < —— f[f—g([l 1 and this, combined with the
| B-g| ’
estimate (AlQ0), yields
| | -3 I NPT
(All) |b_(p,d)~b_(B,q)| < + f-g
£'Pr R . e 1,1
g |B-3]| |B-d| ‘

from which Equation (2.18) follows.




surface of class Cl'l and us is the corresponding solution
of the boundary value problem (2.3), i.e.,
(Bl) Au, = 0 in DI
i~ n b
Bui
(B2) W + kui =0 on y=0 ’
aui
(B3) = = 0 on y=-h ,
au, A
i _ _3du
(B4) -B-—n—- = -BE on Fi ’
and
au,
i . - -
(BS) F - 1koui = 0(r ) .
We divide our discussion into two cases:

APPENDIX B:

This appendix is devoted to the proof of Lemma 3.1.

The functional J(T)=fu§% dl where u is the solution of

r
the boundary value problem (2.3) corresponding to the

particular surface is often referred to as a domain
functional. As we recorded in the introduction, the
consideration of optimization problems involving such
functionals goes back to Hadamard [11]. Other references
have been cited in the introduction. Here we return to

the strategy of Hadamard in order to establish our result.

Proof of Lemma 3.1l:

We begin by recalling some notation: U is an harmonic

2

function in R“x(-h,0) while, for i=1,2, r; is a bounded

oo, S e,
- .t e
ot g™ g et o
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Figure 4

In this case, we denote the shell determined by Tl and

Fz by D;5- Notice that, initially, u, is defined only on
and exterior to Fz. However, we may extend u,
as a ¢! function although this extended function will not,

inside F2

in general, satisfy Laplace's equation interior to Fz.

For details, the reader is referred to Theorem 16.IV of
Miranda (10]. We will assume, throughout the remainder

of this proof, that all functions are so extended, in
accordance with Miranda's method, as to make the expressions
which we will encounter meaningful. Writing u§=ui+ﬁ,
i=1,2, and recognizing that 8u{/8n=0 on Fl and that Au1=0
exterior to Fl and, in particular in D12' we have, with

the divergence theorem,

T

1"y
Dy, D12 Fa

f Yul.Vuldv = f v-(u§Vu§)dv = I u




Using the boundary condition (B4),

A u Ju Ju
T T _ ~ 3u _ 2 ~ 1 1
(B6) I Vul-Vude = I u == ar J Uy 5o dF+J u 5 +f Uy 35 -
Dy P P s Ty
But
au ~ du ~
~ 1 Ju A 1 Ju _
' (B7) I (u S - ul ﬁ)dr-[ (u I ul H)dr =0 -.
3 P 1
i since u and u, are both harmonic in D12' (Note carefully
5 that we always take the normal to Fi as the exterior normal.
:f This accounts for the choice of signs in (B7).) We may
-

now use (B7) to replace the third integral on the right hand

side of (B6). Hence
A au
T T - ~ Ju 2
(B8) f Vul Vuzdv = f ‘u n dI‘-I u2 T ar
D5 Iy Iy

2 1 1 2
But
Ju.; ~ au du
i _ _du : 1 _ 2 _
I 5 °n Ti' i=1,2, and [ (u2 YT u,y 53-)dr =0 .
T
2

Indeed this last relation follows since both v, and u, are

harmonic outside Fz and we have, therefore,

aul auz 3u1 8u2
f Uy 57 = Y1 3090 = ‘f (U 37~ = Y1 a9
Ty Ce
aul 8u2
+ lim I (u - u )ds
Rovo 2 9n 1 3n

oD

R




—— e v W TN TV WY W W v =
L N e s uus ot san s e smms ek Jubhantvh Sl it L ANt i AN A IR A St Pt e -

41

where aDR is the surface of the cylinder D, of radius R.

R
Noting that uy and u, satisfy the free surface condition
(B2), the integral over the free surface is simply

Bul auz
Ce Ce
Moreover, the radiation condition insures that the second
term on the right is zero. For detailed calculations, see
Kleinman [15;pp. 7-9]. Therefore the relation (BS8)

reduces to

du du ~ ~
T.v T = 1 2 ~ 31 ap_[ & dU
(B9) I Vul Vude = I ul m— dI‘-I u2 H— dl"+[ u H dar I u ﬁ
D12 Ty Ty Ty "
or, rearranging terms,
au au
o 1 _ 2 _ T,.,T A2
(B10) AJ = f Uy wg= dr f U, &= dr = f Ih Vuzdv+[ [vul|“av .
M1 Ty D2 Dy2
This is exactly the conclusion of Lemma 3.1 for Case I
since, in this case, Dz\(DlnD2)=D12 and Dl\(DlﬂDz)=ﬂ.

Case II: The surfaces Fl and F2 intersect.

Figure 5
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Here, we use the device of Hadamard to extend the result
of Case I (see e.g. Bergman and Schiffer [3]). Thus, we
introduce an auxiliary surface FO containing both Fl and F2
in its interior and apply the results of the previous case.
With self-explanatory notations, we may write

3

u au ~
1l a T T A 3u ~
(B1ll) J u1 T dF-J u, T ar = J Vul-VuadV+f u Ty dP-I u
Fl Fa Dla Fa Fl
and
ou ou A
2 a _ T,o,T A~ o4 . ~
(B12) [ Uy dF-[ U 5 ar = f Vu2 VuadV+J u = df-f u
Fz Fa D2a Pa F2

Subtracting equation (B12) from (Bll) we obtain

ou ou
(B13) I uy o=t dP+J u, n=2 ar = f Vuf-Vugdv—I Vulvuldv
T
1

N
o

la Dsa

Notice that the right hand side is apparently dependent on
the surface I'; and the solution u, while the left hand side
is not. To see that this dependence is illusory, we

examine the first two integral terms on the right hand side

of (B13). By appropriate addition and subtraction we have

dar
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T T T,o,.T _ T, T o,T T,.o,T
(Bl14) [ Vul-VuadV-[ Vu2 VuadV = [I Vul (Vua Vuz)dv+f Vul Vuzdv]
D D D

la 2a la DIa~~,w_

T T _,.T T,g,,T
- [j Vuzo(Vua-Vul)dV+J (Vu2 Vul)dV]
D2a Dla
- T, 0T o Ty Qv T, (9, T_o0. T
= f Vul (Vua Vuz)dV f Vu2 (Vua Vul)dv

D D

la 2a

T T T T
+ Vul Vude- Vu1 Vude .

DZ\(DlﬂDz) Dl\(DlﬂDz)
But

T T_g,T p L, JI |
f Vul-(Vua-Vuz)dv-[ Vu2 (Vua Vul)dV
Dla DZa
T T
ou Ju
_ T_. Tl o T_ T, 2
= f (ua uz)gﬁ— ar [ (ua ul)ga— ar
T r
a a
auf Bug Buz
since 5 - 0 on Fl and o s 0 on Pz. Also S T 0 on Fa

and thus, after rearranging terms, the relation (Bl4) becomes

(B15) f VuT-Vuzdv-f VuT-Vu§§V

1 2
Dla D2
T T T
Ju au Ju
- T3 . T_ T T_T °a T2 Tl
= f {“a Fa (917U}~ (=Wl g + ¥y 5~ U ’é_n_] dr
Pa
T T T T
+ I- o Vul-Vude- ) o Vul-Vude .
Dz\(DlnDz) Dl\(DlnDZ)

s T A
Now, writing ui=ui+u, i=a,1,2, we have




auT
- uT 1 ar
on 2 3n
3
u, s (ul-uz)

An argument completely analogous to that given above in
Case I allows us to conclude that

aua

3 =
f [ua Tn(ul-uz)-(ul-uz) T ]dI‘ =0
r :
a

and so, as can be easily checked by writing out all terms,
the right hand side of (Bl6) reduces to

Ju

o4y 1
f (B 3w -~ 239 =0

Ta

again because uy and u, both satisfy the free surface and
radiation conditions. )
Combining this last result with equation (B13) and

(B15) we have

au, du, T _.T
(817) I ul 'a—n— dI‘-I \12 H_ ar = I- _ _Vu]_-Vude
_ T.o, T ~ 30 . A 301
) o Vu1 Vuzdv+[ u Ty ar I u = ar
Dl\(DlﬂDZ) F2 Fl

which is the desired result.
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